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Lecture No. 5 

𝐿(𝑢) − 𝑝(𝑥) = 0 in  𝛺 

𝑆𝐸(𝑢) = 𝑔
𝐸

 on 𝛤𝐸 

𝑆𝑁(𝑢) = 𝑔
𝑁

 on 𝛤𝑁 

 For all weighted residual methods 

𝑢𝑎𝑝𝑝 = 𝑢𝐵 + ∑ 𝛼𝑖𝜙𝑖

𝑁

𝑖=1

 

 For all (Bubnov) Galerkin methods 

𝑤𝑖 = 𝜙𝑖  (test = trial) 

 

Summary of Conventional Galerkin Method 

𝑆𝐸(𝑢𝐵) = 𝑔
𝐸

  and  𝑆𝐸(𝜙𝑖) = 0,          𝑖 = 1, 𝑁  on  𝛤𝐸 

𝑆𝑁(𝑢𝐵) = 𝑔
𝑁

  and  𝑆𝑁(𝜙𝑖) = 0,          𝑖 = 1, 𝑁  on  𝛤𝑁 

Ԑ𝐼 = 𝐿(𝑢𝑎𝑝𝑝) − 𝑝(𝑥) 

< Ԑ𝐼 , 𝑤𝑗 > = 0,          𝑗 = 1, 𝑁 
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Fundamental Weak Weighted Residual Galerkin 

 Only satisfy the essential b.c.’s. This makes things a lot easier! 

𝑆𝐸(𝑢𝐵) = 𝑔
𝐸

  and  𝑆𝐸(𝜙𝑖) = 0          𝑖 = 1, 𝑁  on  𝛤𝐸 

 Only require a limited degree of functional continuity. Therefore we can piece together 

functions to make up 𝜙𝑖. Again this makes the problem much easier. 

 Since we’re not satisfying the natural b.c.’s, we also consider the error associated with the 

locations where the natural b.c.’s is violated: 

Ԑ𝐼 = 𝐿(𝑢𝑎𝑝𝑝) − 𝑝(𝑥) 

Ԑ𝐵,𝑁 = −𝑆𝑁(𝑢𝑎𝑝𝑝) + 𝑔
𝑁

 

< Ԑ𝐼 , 𝑤𝑗 >  +< Ԑ𝐵,𝑁 , 𝑤𝑗 > = 0 

This establishes the fundamental weak form. Thus we have relaxed the admissibility 

conditions such that only “essential” b.c.’s  must be satisfied. 

 The Interior and Boundary Error (for the natural boundary) must go to zero by requiring 𝑤𝑗 

to the orthogonal to these errors. Hence we are no longer “clamping” the natural b.c. down 

at the time we set up our sequence but we are “driving” the natural b.c. error to zero as the 

number of trial functions increases. 
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 Expanding out the fundamental weak form by substituting Ԑ𝐼 , Ԑ𝐵,𝑁 and 𝑢𝑎𝑝𝑝. 

 

< 𝐿(𝑢𝐵) − 𝑝, 𝑤𝑗 >  + ∑ 𝛼𝑗 < 𝐿(𝜙𝑗),

𝑁

𝑗=1

𝑤𝑖 >𝛺 +< 𝑔
𝑁

− 𝑆𝑁(𝑢𝐵), 𝑤𝑖 >𝛤𝑁
 

− ∑ 𝛼𝑗 <

𝑁

𝑗=1

𝑆𝑁(𝜙𝑗), 𝑤𝑗 >𝛤𝑁
= 0          𝑖 = 1, 𝑁 

 

 

 

 

 

 

 

 

 

 



 

C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  5           P a g e  4 | 22 

Symmetrical Weak Weighted Residual Form 

 Let’s continue to relax admissibility by integrating the fundamental weak form by parts. 

The “halfway point” of the integration represents the symmetrical weak form”. 

 This integration by parts procedure: 

 Reduces the required functional continuity on the approximating functions. It reduces 

functional continuity requirements on the trial functions while increasing them on the 

test functions. At the symmetrical weak form these requirements are balanced. Thus 

this is the optimal weak form. 

 Furthermore the unknown functions evaluated at the boundary disappear. 

 In general the natural b.c. is only satisfied in an average sense of  𝑁 → ∞. 

 When the operator is self-adjoint, the matrix generated will still be symmetrical for the 

symmetrical and fundamental weak forms. 
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Definition and Use of Localized Functions 

 Split the domain up into segments over which trial/test functions are defined.  

Motivation, it’s easier to satisfy b.c.’s for complex 2D/3D geometries since these can be 

satisfied locally (for weak formulations we need only satisfy the essential b.c.’s). 

 For the finite element method (FEM), we use functions defined over small subdomains, i.e. 

localized functions. 

 However we must ensure that we satisfy the correct degree of functional continuity. For 

example, consider: 

𝐿(𝑢) =
𝑑2𝑢

𝑑𝑥2
 

𝑊(2) space is required for fundamental weak form (continuity of the function and the first 

derivative and a finite second derivative). 

𝑊(1) space is required for the symmetrical weak form (continuity of the function and a 

finite first derivative). 

 Split the domain up into segments and define trial functions within each element. 
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Option 1 

No functional continuity but finite function  → 𝑊(0) space 

(a) The simplest approximation is a histogram (i.e. constant value of the function over the 

element). This defines only one unknown per “finite element”. 
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(b) We can define more complex functions over the element leading to more unknown per 

element (to represent an increased order of polynomial or function within the element). 

However we still have no functional continuity between the elements and thus these 

functions still are from the  𝑊(0) space. 
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Option 2 

The function is continuous which defines the 𝑊(1) = 𝐶𝑜 space. This space requires no 

continuity of the derivative. We define the discrete variables equal to the functional values at 

the nodes. Nodes must always join up at the inter element boundaries! 

(a) The simplest approximation consists of a linear approximation over an elements which 

involves 2 unknowns per element and 1 unknown per node: Thus over each element: 

𝑢 = 𝑐𝑜 + 𝑐1𝑥 

 

 

 

 

 

Thus we’ve gone from an element measure to a nodal measure. 

An interpolating function defined with nodal functional values and  𝑊(1) = 𝐶𝑜 continuity is 

called a Lagrange Interpolating function. 
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(b) We can use higher degree functions within each element (i.e. more nodes per element) 

however functional continuity will still only be  𝑊(1). For example: 

𝑢 = 𝑐𝑜 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 
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Option 3 

The function and first derivative continuous defines the  𝑊(2) = 𝐶1space. In this case we must 

define the function and the first derivative as nodal variables. 

(a) Simplest approximation involves 2 nodes with 2 unknowns per node. Thus over each 

element: 

𝑢 = 𝑐𝑜 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 

 

 

 

 

 

 

Therefore u and 𝑢,𝑥 are the unknowns. This involves 4 unknowns per element, 2 unknowns 

per node.  

Interpolating functions defined with nodal functional and first derivative values with 

𝑊(2) = 𝐶1 continuity are called Hermite Interpolating functions. 
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1st order Hermite: 𝑢 and 𝑢,𝑥 continuous 

2nd order Hermite: 𝑢, 𝑢,𝑥 and 𝑢,𝑥𝑥 continuous → 3 unknowns per node 

 

Note 1 

For the Galerkin method, 𝑤𝑗 = 𝜙𝑗 

 The fundamental weak form requires different order functional continuity for 𝜙𝑗 as 

trial functions than the 𝑤𝑗 (or 𝜙𝑗 as test) functions. 

 The symmetrical weak form is obtained by integration by parts until the space 

requirements for 𝜙𝑗 and 𝑤𝑗 are the same. This is the most attractive form to use. We 

note that the number of unknowns has been minimized. 
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Example 

 Fundamental weak form: 

∫ {
𝑑2𝑢𝑎𝑝𝑝

𝑑𝑥2
+ 𝑢𝑎𝑝𝑝 − 𝑥} 𝑤𝑗𝑑𝑥 + [(𝑔 −

𝑑𝑢𝑎𝑝𝑝

𝑑𝑥
) 𝑤𝑗]

𝑥=1

= 0

1

0

 

𝑤𝑗 ∈ 𝐿2 and 𝑢𝑎𝑝𝑝 (or 𝜙𝑖) ∈ 𝑊(2),     𝑗 = 1, 𝑁 

Therefore we must choose 𝑤𝑗 and 𝜙𝑗 ∈ 𝑊(2)  

The functional and first derivative must be continuous) leading to a cubic approximation 

over the element with 2 unknowns per node (function value and its 1st derivative). Thus we 

require Hermite interpolation 

 2nd weak form: Symmetrical Weak Form 

∫ (−
𝑑𝑢𝑎𝑝𝑝

𝑑𝑥

𝑑𝑤𝑗

𝑑𝑥
+ 𝑢𝑤𝑗 + 𝑥𝑤𝑗) 𝑑𝑥 + |𝑔𝑤𝑗|

𝑥=1
= 0

1

0

 

 

 

 



 

C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  5           P a g e  13 | 22 

 The opposite of the fundamental weak form is obtained by interchanging 𝑢𝑎𝑝𝑝 and 𝑤𝑗 and 

leads to the B.E.M form 

|
𝑑𝑤𝑗

𝑑𝑥
𝑢𝑎𝑝𝑝|

0

1

+ |𝑔𝑤𝑗|
𝑥=1

+ ∫ {𝑢𝑤𝑗 + 𝑥𝑤𝑗 + 𝑢𝑎𝑝𝑝

𝑑2𝑤𝑗

𝑑𝑥2
} 𝑑𝑥 = 0

1

0

 

Now 𝑤𝑗 ∈ 𝑊(2) and 𝑢𝑎𝑝𝑝 (or 𝜙𝑗) ∈ 𝐿2 
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Note 2 

Alternative strategy for deriving the symmetrical weak form: 

 Start with standard Galerkin formulation 

 Integrate by parts 

 Substitute in for the specified natural b.c. 

Example 

 Standard Galerkin formulation 

∫ {
𝑑2𝑢𝑎𝑝𝑝

𝑑𝑥2
+ 𝑢𝑎𝑝𝑝 + 𝑥} 𝑤𝑗𝑑𝑥 = 0

1

0

 

 

 Integrate by parts: 

∫ {−
𝑑𝑢𝑎𝑝𝑝

𝑑𝑥

𝑑𝑤𝑗

𝑑𝑥
+ 𝑢𝑤𝑗 + 𝑥𝑤𝑗} 𝑑𝑥 + [

𝑑𝑢𝑎𝑝𝑝

𝑑𝑥
𝑤𝑗]

𝑥=0

𝑥=1

= 0

1

0

 

⇒ 

∫ {−
𝑑𝑢𝑎𝑝𝑝

𝑑𝑥

𝑑𝑤𝑗

𝑑𝑥
+ 𝑢𝑤𝑗 + 𝑥𝑤𝑗} 𝑑𝑥 + [

𝑑𝑢𝑎𝑝𝑝

𝑑𝑥
𝑤𝑗]

𝑥=1
− [

𝑑𝑢𝑎𝑝𝑝

𝑑𝑥
]

𝑥=0
= 0

1

0
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 However for our example case: 

𝑑𝑢𝑎𝑝𝑝

𝑑𝑥
|

𝑥=1
≅ 𝑔          (specified natural b.c.) 

 Substituting the above equation as well as 𝑤𝑗|
𝑥=0

= 0 (since 𝜙𝑗 satisfies the 

homogeneous form of the essential b.c.), leads to: 

∫ {
𝑑𝑢𝑎𝑝𝑝

𝑑𝑥

𝑑𝑤𝑗

𝑑𝑥
+ 𝑢𝑤𝑗 + 𝑥𝑤𝑗} 𝑑𝑥 + [𝑔𝑤𝑗]

𝑥=1
= 0

1

0
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Note 3 

For collocation we cannot use an integration by parts procedure to lower the required degree 

of functional continuity as we could for Galerkin methods. This is due to the form of the 

weighting functions, 𝑤𝑗 = 𝛿(𝑥 − 𝑥𝑗) (the dirac delta function) which is not differentiable.  

𝑑𝛿(𝑥 − 𝑥𝑗)

𝑑𝑥
 

does not exist. Therefore it is not possible to find any weak forms!  

Therefore for a 2nd order operator we must use Hermite type interpolation compared to the 

Galerkin Symmetrical weak form for which we only needed Lagrange type interpolation. 
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Note 4 

 Summary of Advantages of Weak Forms: 

 Fundamental weak form has relaxed b.c. requirements. It’s much easier to find trial/test 

functions which satisfy the homogeneous form of the essential b.c. than both the essential 

and natural b.c.  

This is especially true when using the FE method where we simply go into the matrix and 

set the essential b.c. u and we need not worry about “strictly” enforcing the natural 

boundary condition 𝑑𝑢/𝑑𝑥 

 Symmetrical weak form has relaxed functional continuity requirements. This is very 

important when defining functions over split domains (FE method).  

Note that one important reason we split the domains is in order to satisfy the essential 

b.c.’s easier. The symmetrical weak form lowers the inter-element functional continuity 

requirements and thus lowers the number of unknowns. In addition part of the natural b.c. 

error falls out due to the way in which it was defined. 
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Notes on a 4th derivative operator problem 

Consider the equilibrium equation for a beam on an elastic foundation 

𝐸𝐼
𝑑4𝑣

𝑑𝑥4
+ 𝑘𝑣 = 𝑝(𝑥) 

where 

v = beam displacement 

E = modulus of elasticity 

I = moment of inertia 

k = foundation constant 

p = distributed load on the beam 
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Standard Galerkin 

〈𝐿(𝑣) − 𝑝, 𝛿𝑣〉 = 0 

⇒ 

∫ {𝐸𝐼
𝑑4𝑣

𝑑𝑥4
+ 𝑘𝑣 − 𝑝} 𝛿𝑣𝑑𝑥 = 0

𝑙

0

 

 We can establish what the essential and natural b.c.’s are by using the integration by parts 

procedure to find: 

〈𝐿(𝑣), 𝛿𝑣〉 = 〈𝐿∗(𝛿𝑣), 𝑣〉 + 

∫ [𝐹1(𝛿𝑣)𝐺1(𝑣) + 𝐹2(𝛿𝑣)𝐺2(𝑣) − 𝐹1(𝑣)𝐺∗
1(𝛿𝑣) − 𝐹2(𝑣)𝐺∗

2(𝛿𝑣)]𝑑𝛤 

 We perform 2 integration by parts to find the bc’s (assuming EI constant): 

〈𝐿(𝑣), 𝛿𝑣〉 = ∫ {𝐸𝐼
𝑑2𝑣

𝑑𝑥2

𝑑2𝛿𝑣

𝑑𝑥2
+ 𝑘𝑣𝛿𝑣} 𝑑𝑥

𝑙

0

+ [−𝐸𝐼
𝑑2𝑣

𝑑𝑥2

𝑑𝛿𝑣

𝑑𝑥
+ 𝐸𝐼

𝑑3𝑣

𝑑𝑥3
𝛿𝑣]

𝑥=0

𝑥=1
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 This is halfway point of the integration by parts procedure and represent the symmetrical 

weak form: 

 Hence the essential b.c.’ are:   𝐹1(𝑣) = 𝑣 → displacement 

               𝐹2(𝑣) =
𝑑𝑣

𝑑𝑥
→  slope 

 the natural b.c.’s are:    𝐺1(𝑣) =  −𝐸𝐼
𝑑3𝑣

𝑑𝑥3 = 𝑄 → applied shear 

                𝐺2(𝑣) = +𝐸𝐼
𝑑2𝑣

𝑑𝑥2 = 𝑀 → applied moment 

 Note that the weighting functions that are to be used in establishing the fundamental 

weak form fall out of this integration by parts procedure used in establishing self-

adjointness of the operator (which also establishes b.c.’s). You want terms to drop later 

on! 
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 Natural boundary errors 

 The error in the moment is: 

Ԑ𝐵
′ = {𝐸𝐼

𝑑2𝑣

𝑑𝑥2
− 𝑀} {

𝑑𝛿𝑣

𝑑𝑥
} 

 A error in the shear is: 

Ԑ𝐵
" = {−𝐸𝐼

𝑑3𝑣

𝑑𝑥3
− 𝑄} {𝛿𝑣} 

 Weighted natural boundary errors 

 A moment error is weighted by a rotation: 

〈Ԑ𝐵
′ ,

𝑑𝛿𝑣

𝑑𝑥
〉 = ∫ {𝐸𝐼

𝑑2𝑣

𝑑𝑥2
− 𝑀}

Γ𝑁

{
𝑑𝛿𝑣

𝑑𝑥
} 𝑑Γ 

 A shear error is weighted by a displacement 

〈Ԑ𝐵
" , 𝛿𝑣〉 = ∫ {−𝐸𝐼

𝑑3𝑣

𝑑𝑥3
− 𝑄}

Γ𝑁

{𝛿𝑣} 𝑑Γ 



 

C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  5           P a g e  22 | 22 

 

 Note that we must specify essential b.c.’s somewhere!  

 Boundary conditions must be specified in pairs for this problem 

 Displacement and rotation are paired 

 Shear and moment are paired 

 The error/weighting products fall out of the integration by parts process. They are also 

dimensionally consistent with all terms in the total error equation.  

 The total error equation for this problem is the fundamental weak form 

〈Ԑ𝐼
⬚, 𝛿𝑣〉 + 〈Ԑ𝐵

′ ,
𝑑𝛿𝑣

𝑑𝑥
〉 + 〈Ԑ𝐵

" , 𝛿𝑣〉 = 0 

where 

Ԑ𝐼
⬚ = 𝐸𝐼

𝑑4𝑣

𝑑𝑥4
+ 𝑘𝑣 − 𝑝 

 The symmetrical weak form is established by integrating the fundamental weak form by 

parts. 


